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Abstract

Alzheimer’s disease (AD) is the most common neurodegenerative disorder, and its

pathogenesis is likely to be associated with multiple etiologies and mechanisms in

which oxidative stress and deficits of neurotransmitter receptors may play impor-

tant roles.  It has been indicated that a high level of free radicals can influence the

expressions of nicotinic receptors (nAChRs), muscarinic receptors (mAChRs), and

N-methyl-D-aspartate (NMDA) receptors, exhibiting disturbances of cellular mem-

brane by lipid peroxidation, damages of the protein receptors by protein oxidation,

and possible modified gene expressions of these receptors by DNA oxidation.

nAChRs have shown an antioxidative effect by a direct or an indirect pathway;

mAChR stimulation may generate reactive oxygen species, which might be a physi-

ological compensative reaction, or improve oxidative stress; and high stimulation

to NMDA receptors can increase the sensitivity of oxidative stress of neurons.

This review may provide complemental information for understanding the correla-

tion between oxidative stress and changed cholinergic and glutaminergic recep-

tors in AD processing, and for revealing the underlying molecular mechanisms of

these factors in the multiple etiologies and pathophysiology of the disorder.
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Introduction

Alzheimer’s disease (AD) is the most common neuro-

degenerative disorder of the elderly.  The disease occurs both

in sporadic and hereditary forms, and the main clinical fea-

tures of this disease are progressive memory loss, decline in

language skills, and other cognitive impairments[1].  The major

pathological hallmarks in AD are senile plaques (SP) and neu-

rofibrillary tangles (NFT), which have for the most part been

regarded as central mediators of neuronal cell death leading to

cognitive decline and eventual demise[2,3].  The core of SP is

abundantly deposited with β-amyloid peptides (Aβ), a 39–

43 amino acid peptide, which is the result of proteolytic cleav-

age of the transmembrane amyloid precursor protein (APP).

The NFT contain paired helical filaments that are mostly com-

posed of a hyperphosphorylated form of the microtubule-as-

sociated tau protein.

Although the initiating causes leading to AD are

unknown, it is clear that its pathophysiology is complex and

most likely involves multiple distinct and overlapping path-

ways of neuronal damage, including genetic deficit, oxida-

tive stress, impaired neurotransmitter receptors, and other

biological or biochemical abnormalities (Figure 1).  Since the

pathogenesis of AD remains elusive, there is no efficient

cure of the disorder, and targeting the disruption of neu-

rotransmission is the most viable therapeutic strategy at

present[4].

Oxidative stress in AD

Oxidative stress, defined as a disturbance in the balance

between the production of free radicals and antioxidative

defense, may play an important role in several pathological

conditions of the central nervous system (CNS)[5,6].  There is

a great deal of evidence to suggest that the damage induced

by free radicals may be an important pathogenesis in AD[7].

Free radicals, such as superoxide, hydroxyl ions, and nitric

oxide, cause cell injury by damaging lipids, protein, and DNA

when they are generated in excess or antioxidative defense

is impaired[8].  The brain is more vulnerable to oxyradical-



774

 Acta Pharmacologica Sinica ISSN 1671-4083Guan ZZ

mediated injury because its cellular membranes are preferen-

tially enriched in oxyradical-sensitive polyunsaturated fatty

acids that are the substrates of lipid peroxidation, and dam-

aged adult neurons cannot be replaced.

Multiple lines of evidence link oxidative stress and AD.  In

brain tissues from AD, carbonyls derived from protein oxida-

tion were increased in the neuronal cytoplasm and nuclei of

neurons and glial cells[9].  Moreover, NFT were strongly la-

beled by carbonyls.  Transgenic animals with Aβ overexpression

show the same type of oxidative damage found in AD, and

this damage directly correlates with the presence of Aβ de-

posits[10].  To diagnose AD in clinical examinations, oxidative

stress markers, such as 3-nitrotyrosine, 8-hydroxy-2'-

deoxyguanosine, and isoprostanes, are found to be increased

in cerebrospinal fluid in AD patients[11].  Interestingly, the

elevation of lipid peroxidation in transgenic mice with APP

mutations has been observed to precede the surge in the Aβ

level and amyloid plaque formation[12,13].

Reduced glucose metabolism and mitochondrial abnor-

malities are associated with AD, as mitochondrial abnor-

malities are considered to be the source of oxidative stress

in AD[14].  Mitochondrial abnormalities have been associ-

ated with deficiencies in enzyme activities, specifically the

α-keto-glutarate dehydrogenase complex, pyruvate dehy-

drogenase complex, and cytochrome oxidase in AD neurons.

Oxidative phosphorylation produces superoxide radicals

as a byproduct associated with electron transport.  Height-

ened superoxide radical formation in AD also correlates

with heightened superoxide dismutase levels that may al-

low the release of H2O2 from the mitochondria to the cyto-

plasm[15].

Recent studies of living patients and transgenic mod-

els of the disease have shed light on the central issue of

whether oxidative stress is a result of the pathology of AD

or whether it is an initiator of pathological damage.  From

our studies relating to oxidative stress in AD, we have

shown decreased cellular membrane phospholipids and

polyunsaturated fatty acids in the AD brain, in which these

specific lipid modifications strongly support the involve-

ment of free radicals in the pathogenesis of AD[16].  A closed

correlation has been found between the high level of lipid

peroxidation and the decreased number of nicotinic recep-

tors in the AD brain[17].  We have suggested that oxidative

stress is an early event in AD and is likely to play a more

active role in the pathogenesis than previously hypoth-

esized[18].  The mechanisms of oxidative stress in AD are

shown in Figure 2.

Aggregated Aβ is toxic in a variety of neuronal cell

preparations, and the overexpression of Aβ in transgenic

mice leads to increased neuronal oxidative stress.

Interestingly, recent evidence, however, has revealed that

Aβ and NTF might have a compensatory response induced

by reactive oxygen species (ROS) and have neurotrophic

and potentially cytoprotective properties[19].

Changed cholinergic and glutaminergic
receptors in AD

There is a great deal of evidence that suggests that in the

AD brain, a number of neurotransmitter receptor systems

are defective.  Such abnormalities include cholinergic-,

glutaminergic-, dopaminergic-, and γ-amino butyric acid-re-

ceptor (GABA) systems.  Of all the neurotransmitter sys-

tems studied, cholinergic and glutaminergic receptors are

Figure 1. Etiology and pathogenesis of AD. Arrow with double directions means both agents can be initiating reason or secondary result.
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more noticeably involved in the pathogenesis of AD.

Neuronal nicotinic acetylcholine receptors in
AD

In cholinergic transmission, neuronal nicotinic acetyl-

choline receptors (nAChRs) have been extensively investi-

gated during the progress of AD.  The nAChRs belong to a

gene super family of homologous receptors, including

nicotinic, GABA, glycine, serotonin, and glutamate recep-

tors[20].  The nAChRs in the brain are composed of 2 types of

subunits, α and β.  The gene family for neuronal nAChRs

contains at least 9 α subunits (α2–α10) and 3 β subunits

(β2–β4).  Like the muscle type of nAChRs, the agonist rec-

ognition site of the neuronal nAChRs is on the interface

between the α and β subunits.  The expression of combina-

tions of different α subunits with β subunits may produce

functionally distinct neuronal nAChRs in different brain

regions.  The α4β2 and α7 subtypes are the most common

patterns of nAChRs in the brain[20].

Interestingly, nAChRs are involved in many brain

functions, such as cognition, memory, and neuroprotection,

and a pathogenic role of the receptors has been established in

AD[21].  Studies of AD patients with positron emission tomog-

raphy have shown significant deficits in nAChRs early in the

course of the disease, which is related to cognitive function.

Significant reductions in the number of nAChRs were also

observed in various autopsy brain cortical regions of the Swed-

ish 670/671 APP mutation family[22].  In our previous

investigations, a decreased level of nAChR subunit proteins,

such as α4, α7, and α3, were detected in AD brains[23,24].  A

large loss of the receptors in AD brains and in a cellular

model provoked interest in developing therapeutic agonists

for specific nAChR subtypes.  In a recent study, we found

that suppressed gene expression of nAChRs resulted from

treatment by nanomolar Aβ25–35 and Aβ40 in PC12 cells[25].

The α7 nAChR is of importance in an AD study due to its

neuroprotective function[26].  The α7 nAChR is highly ex-

pressed on neurons of the hippocampus and cholinergic pro-

jection neurons from the basal forebrain.  A number of recent

studies have convincingly demonstrated an interaction be-

tween the α7 nAChR and Aβ in vitro and on neurons.  For

instance, it was shown that Aβ1–42 co-immunoprecipitates

with the α7 nAChR in the samples from a postmortem AD

hippocampus, and Aβ can activate α7 nAChR[27].  A recent

study has shown a selective increased α7 nAChR in APPSWE

transgenic mice, which is not consistent with earlier changes

in AD, and suggested important protective compensatory

mechanisms in response to deficits in synaptic plasticity

induced by elevated soluble Aβ[28].  We observed an increase

in the α7 subunit in astrocytes and a decrease in the same

receptor subtype in neurons in the hippocampus and the tem-

poral cortex of AD patients who died carrying the APPSWE

mutation[24].  The findings suggest different regulatory mecha-

nisms and roles of the α7 nAChR in astrocytes and neurons.

Muscarinic acetylcholine receptors in AD

The muscarinic acetylcholine receptors (mAChRs) medi-

ate most of the actions of the neurotransmitter acetylcholine

in the CNS and peripheral nervous system, as well as in the

end organs of parasympathetic nerves[29].  In mammals, 5

distinct mAChR subtypes (M1–M5) have been identified,

with each receptor subtype being the product of a different

Figure 2. Mechanism of oxidative stress in AD. Arrow with double directions means both agents can be initiating reason or secondary result.
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gene.  The mAChR belongs to the super family of 7 trans-

membrane receptors, which activate signal transduction path-

ways through their interaction with GTP binding proteins

(G-proteins).  mAChRs are stimulated by agonists, such as

acetylcholine, which activates G-protein and evokes typi-

cally slow and modulatory second message responses.  In

cholinergic transmission, mAChRs have been implicated in

higher brain functions, such as learning and memory, and

the loss of muscarinic cholinergic synapses may contribute

to the symptoms of AD[30].

Among the 5 types of mAChRs, the M1 mAChR is pre-

dominant in the cerebral cortex and hippocampus and has

attracted great interest for its major function in cognitive

processing relevant to AD, in particular short-term memory.

An early study showed that a significantly reduced number

of [3H] quinuclidinyl benzilate binding sites was obtained in

AD dementia groups.  A significant negative correlation was

observed in AD brains between the histopathological de-

mentia score and the reduction in the activity of the acetyl-

choline synthesizing enzyme choline acetyltransferase[31].  A

disturbance of the muscarinic receptor–G-protein coupling

in AD has been suggested, which might be impaired by the

formation of Aβ.  This can lead to decreased signal transduction,

a decreased secreted form of APP, and increased generation

of Aβs, and can further aggravate the cholinergic deficiency.

M1 agonists can elevate APP, decrease tau protein phos-

phorylation/hyperphosphorylation, and restore cognitive im-

pairments in several animal models for AD[32,33].  A significant

decrease of M1 mAChR mRNA, but with no changes of M2,

M3, or M4, in the temporal cortex of AD has been observed[34].

The M1 mAChR protein was decreased in the cortex and hip-

pocampus despite unchanged levels of the M1 binding sites

in the same regions[35].  The impaired neurotransmission of

mAChRs might be involved in the pathogenesis of AD.

N-methyl-D-aspartate receptors in AD

Glutaminergic neurons form the major excitatory system

in the brain and play an important role in brain functions.

Glutamate activates several classes of metabotropic

receptors, including 3 major types of inotropic receptors,

such as N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-

S-methylisoxazale-4-proprionic acid, and kainic acid recep-

tors[36].  Essentially, the NMDA receptor has important func-

tions in synaptic transmission, synaptic plasticity,

synaptogenesis, and excitotoxicity[37].

There is growing evidence that disturbances of

glutamin-ergic neurotransmission may contribute to the

pathophysiological mechanism and cognitive deficits of AD.

The colocalization of glutamatergic neurons and NFT or SP

in the AD brain has been observed[38].  It has been reported

that NMDA receptors are decreased in the cortical regions

and hippocampus in AD brains[39].  A reduction in NMDA

receptor subunit 1 mRNA in the hippocampus and an in-

crease in the frontal and temporal cortices have also been

observed[40].  In in vitro studies, the addition of Aβ en-

hances glutamate release from primary cultured microglia

of rats[15] and increases the toxicity of glutamate[41].  The

increase of vulnerability to glutamate-induced excitotoxicity

has been found in the hippocampal neurons prepared from

presenilin-1 mutation mice[42].  The studies by using

transgenic mice with APP mutations have shown an en-

hanced sensitivity to glutamatergic agonists, such as

NMDA and kainic acid[43].  Although almost all of the data

have reported a decrease or no change of NMDA receptor

subunits in AD, there is still ongoing debate as to whether

NMDA receptor changes cause excitotoxicity or hypoactivity

in AD[44].  This interest has been increased due to the

drug approval of memantine, a partial NMDA antagonist,

that can reduce clinical deterioration in moderate to se-

vere AD[45].

Correlations between oxidative stress and
modifications of cholinergic and glutaminergic
receptors connected with AD

Both cholinergic and glutaminergic receptors are cellu-

lar membrane proteins that are located on the structure,

which consists of membrane lipids.  Studies on protein–

lipid interactions have shown that functions of neurotrans-

mitter receptors are highly dependent on the environment

of lipid compositions[46].  Brain tissue is more vulnerable to

free radical-mediated injury, because the organ utilizes high

amounts of oxygen and its cellular membranes are prefer-

entially enriched in oxyradical-sensitive polyunsaturated

fatty acids[47].  Sequentially, the surrounding lipids of recep-

tors in the brain are very sensitive to attack by free radicals.

Oxidative stress has been implicated as a contributing factor

to neurodegeneration in AD and has a significant connec-

tion with the deficits of cholinergic and glutaminergic recep-

tors in the CNS.

Oxidative stress and nAChRs

Recently, we observed that lipid peroxidation in cellu-

lar membranes can induce a reduction in [3H]epibatidine

or [125I]α-bungarotoxin (α-BTX) binding of  nAChR in

PC12 cells[18].  In addition, the free radical insult (FeSO4)

we used, which it could induce concentration-dependent

increases in lipid peroxidation, but did not result in
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apoptosis in PC12 cells, significantly induced reductions

at the protein level for α3 and α7 nAChR subunits, and at

the mRNA level for the α7 subunit[18], indicating an effect

of free radicals on the gene expression of nAChR.  The

pretreatment of cultural cells with antioxidants, such as

vitamin E and reduced glutathione, can prevent the in-

hibitory effect of free radicals on [3H]epibatidine and [125I]

α-BTX-binding sites.

The correlation between oxidative stress and the loss

of the α4 nAChR subunit has been investigated in the tem-

poral cortex from patients with AD, and the results showed

a significant correlation between increased levels of lipid

peroxidation and decreased numbers of the α4 nAChR sub-

unit protein in AD brains [17].  In a recent study, we also

found that lipid peroxidation induced directly by Aβ might

be involved in the deficits of nAChR[48].  In this study,

PC12 cells were treated by the addition of 5 mmol/L Aβ25–35

and Aβ1–40, respectively, with or without an antioxidant,

vitamin E.  An increased lipid peroxidation and significant

reductions in [3H]epibatidine and [125I]α-BTX binding sites

and in the protein levels of the α3 and α7 nAChR subunits

were observed in the cells treated with Aβ.  Interestingly,

the decreases of the nAChR binding sites and subunit pro-

teins resulting from Aβ were mostly prevented by pretreat-

ment with the antioxidant.  Aβs damage and kill neurons

possibly through an effect on membrane lipid peroxidation,

impaired ion-motive ATPases, glucose, and glutamate trans-

porters making nerve cells vulnerable to the excitotoxic ef-

fects of glutamate[49].  These findings suggest that lipid

peroxidation induced by Aβ might trigger the loss of nAChR

in AD[48].

Interestingly, the α7 nAChR subtype may have an

antioxidative function.  When being exposed to ethanol,

PC12 cells exhibited an increase in intracellular oxidative

stress, whereas after selectively activating α7 nAChR by a

receptor agonist, 3-(2,4)-dimethoxybenzylidine anabaseine,

the action of ethanol for stimulating oxidative stress can be

attenuated[50].  These results suggest that the cytoprotection

conferred by the α7 nAChR agonist may be mediated at

least in part by reducing the formation or accumulation of

ROS[50].  Recently, we observed that the decreased expres-

sion of α7 nAChR in SH-SY5Y cells by employing small

interference RNA that are specifically targeted towards the

receptor can enhance lipid peroxidation and stimulate the

toxicity exerted by Aβ[51], suggesting that α7 nAChR plays

a significant antioxidative role in connection with the patho-

genesis of AD.  The antioxidative properties connected with

a mechanism through the activation of nAChR have also

been demonstrated in PC12 cells by treatment with varying

amounts of nicotine[52].

Oxidative stress and mAChR

Early studies have shown that oxidative stress can reduce

the number of mAChR in the rat brain and canine heart[53].

The effects may be due to receptor destruction or inactiva-

tion resulting from membrane damage mediated by free

radicals.

Recent findings have indicated that M1, M2, or M4

mAChR-transfected COS-7 cells show greater oxidative

stress sensitivity than those transfected with M3 or M5, and

similar findings have also been observed when the cells were

exposed to Aβ25–35 and Aβ1–40, suggesting an attack on the

receptors by free radicals induced by Aβ[54].  An endog-

enous inhibitor with low molecular weight from the AD brain

inactivates the human brain mAChR via a decrease of ligand

binding to the receptor[55].  The prevention of inactivation of

the mAChR with antioxidants suggests that the endogenous

inhibitor with low molecular weight generates damage of the

receptor due to oxidative stress.

It has been demonstrated that ROS are generated after

mAChR stimulation[56].  Blocking mAChR can prevent increased

levels of oxidative stress.  Since stimulation of the mAChR

leads to the activation of multisignaling pathways, including

the muscarinic-induced, mitogen-activated protein kinases

pathways and ROS production, and to the upregulation of the

binding activity of transcription factors, such as NF-κB and

activator protein-1 (AP-1), ROS (over a narrow concentration

range) might function as second messengers in cell-signaling

pathways[57].  ROS may not merely cause damage, but may

also be mediators of physiological functions.

Oxidative stress and NMDA receptors

It has been indicated that Aβ could place glutamate-

sensitive neurons at risk by enhancing glutamate and oxy-

gen free radical production by monocyte-derived cells, in

which such mechanisms might contribute to the pathogen-

esis of AD.  In glia cultures, Aβ inhibits glutamate uptake,

probably connected with an increased production of free

radicals[58].  Lipid peroxidation induced by homocysteine

can be completely inhibited by the NMDA receptor

antagonist, dizocilpine (MK-801), suggesting that oxida-

tive injury to nerve terminals involves NMDA receptor

stimulation[59].  Acute ammonia intoxication diminishes the

activities of antioxidative enzymes and increases superox-

ide formation in rat brains, and the ammonia-induced oxida-

tive stress is mediated by the excessive activation of NMDA

receptors[60].
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The protective action of stobadine, an antioxidant, can pre-

vent the decreased number of NMDA binding sites elicited by

hypoxia/reoxygenation in the rat hippocampus by its

antioxidative and antiradical effects[61].  A low-affinity antago-

nist of NMDA receptors, sulfasalazine, can have neuroprotective

effects by preventing Ca2+ influx and accumulation through

blocking NMDA receptors[62].  Pyridostigmine bromide, a re-

versible cholinesterase inhibitor, can induce apoptosis in rat

cerebellar granule cells by producing ROS generation, which

can be blocked by MK-801 and atropine, a muscarinic recep-

tor antagonist[63].

The mechanism of the influence of oxidative stress on

membrane receptors might be involved in: (1) reactive oxy-

gen metabolites affecting the binding of ligands to mem-

brane receptors and also the coupling of receptors to G-

proteins and effector enzymes; (2) the peroxidation of mem-

brane lipids altering the viscosity of the plasma membrane,

which affects receptor coupling; (3) ROS interaction with

thiol/disulfide moieties on receptor proteins or on other

factors in the receptor system, which is responsible for

alterations in receptor binding or coupling; (4) the associa-

tion of lipid peroxidation with the modification of fatty ac-

ids by the phospholipase A2 pathway, in which arachi-

donic acid binds directly to the receptors or perturbs the

local environment to indirectly affect receptor function; (5)

oxidative stress leading to a disturbance in cellular Ca2+

homeostasis, which might be related to an effect on Ca2+-

mobilizing receptors; (6) ROS interference with actions of

nitric oxide, thus affecting another pharmacological mes-

senger system; and (7) oxidative stress influencing the pro-

cessing of transcription or translation of these neurotrans-

mitter receptors by modulating the expression at the pro-

tein or mRNA levels.

Conclusion

Both oxidative stress and the modifications of nAChR,

mAChR, and NMDA receptors play important roles in the

pathogenesis of AD.  In addition, there is a closed relation-

ship between oxidative stress and these receptors (Figure

3).  A high level of free radicals can induce the disturbance of

the cellular membrane by lipid peroxidation and attack pro-

tein receptors by protein oxidation, as well as possibly dam-

aging the gene expression of these receptors by DNA

oxidation, which might be an important mechanism for the

receptor deficit in the AD process.  nAChRs have also shown

an antioxidative effect by a direct or indirect pathway,

whereas high stimulation to NMDA receptors can increase

the sensitivity of oxidative stress of neurons.  mAChR stimu-

lation can generate ROS, which might be a physiological

compensative reaction, or improve oxidative stress.  When

considering the therapeutic strategy for AD, 2 more ap-

proaches with antioxidative properties and neurotransmitter

receptor regulation might ultimately be combined to provide

important and efficient roles in drug action.
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